Relatedness of proteolytic potency and virulence in entomopathogenic fungus *Beauveria bassiana* isolates

Masume Zare, Reza Talaei-Hassanloui* and Khalil-Berdi Fotouhifar

Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Abstract: Entomopathogenic fungi produce a variety of degrading enzymes, including proteases, chitinases and lipases, to facilitate their entry through the massive barriers of insect cuticle. Isolates of the entomopathogenic fungi vary considerably in their proteolytic activity and virulence. The proteolytic activity of different isolates has been hypothesized to reflect their virulence toward the host. In this study, we evaluated the virulence and proteolytic activity of 17 *Beauveria bassiana* sensu lato isolates collected from different geographical regions in Iran. The selective medium D0C2 was used for isolating *B. bassiana* from soil samples. Casein substrate was used for protease assay. Total mortalities caused by different *B. bassiana* isolates through the dipping method, ranged from 25 to 60% with the highest and lowest rates for isolates BA and MITE, respectively. Our results revealed a wide variation in both proteolytic activity and virulence among the studied isolates. Additionally, we found a strong positive correlation between the proteolytic activity on Casein substrate and virulence of the isolates against the Khapra beetle, *Trogoderma granarium*. This finding will facilitate the screening and selection process of virulent fungal isolates as efficient agents for use in biological control programs of insect pests.

Keywords: entomopathogenic fungus, protease activity, *Trogoderma granarium*, insect, *Beauveria bassiana*

Introduction

In recent decades, with the increasing concerns related to pesticide residues in agricultural products and environment, insect resistance to insecticides as well as the adverse effects of chemical pesticides on beneficial organisms (Fitt, 1994; Gatehouse et al., 1994; Haq et al., 2004), efforts for development of alternative non-chemical strategies have experienced greater attention (Scholte et al., 2004). The use of biological control agents including predators, parasitoids and entomopathogenic agents (bacteria, nematodes, viruses, fungi, etc.) has been promising candidate for control of insect pests. Among these agents, entomopathogenic fungi have been reported to infect a very wide variety of insects that are of great economic importance in agriculture worldwide (Roberts and Humber, 1981). Although, the precise number of entomopathogenic fungi is unclear, it has been estimated to be more than 700 species across the world (Onofre et al., 2001).

Soil is the main center for establishment and growth of entomopathogenic fungi because it protects the fungi against desiccation and ultra-violet radiation (Klingen...
and Haukeland, 2006). On the other hand, about 95 percent of insect species have been estimated to spend, at least part or all of their life within the soil (Kuhnelt, 1963). This makes the soil an ideal environment for natural control of insect populations by entomopathogenic fungi.

Entomopathogenic fungi enter the insect body mainly through their integument (Scholte et al., 2004; Balachander et al., 2012). This entry through the relatively massive barriers of the insect cuticle occurs by a combination of mechanical pressure and enzymatic degradation (St-Leger et al., 1986). Insect cuticle comprises up to 70% protein and it is not surprising that extracellular fungal proteases appear to be particularly important in the penetration process (Charnley, 2003). For example, the three common entomopathogenic fungi, Metarhizium anisopliae (Mets.) Sorokin, Beauveria bassiana (Bals.) Vuill. and Lecanicillium muscarium (Petch) Zare and Gams (formerly known as Verticillium lecanii (Zimm.) Viegas) produce a variety of extracellular hydrolytic enzymes in liquid cultures containing locust cuticle as sole carbon source (St-Leger et al. 1986). These enzymes are believed to play an important role in penetration into host body because they act against the major components of insect cuticle i.e. proteins and less importantly, lipids, and chitin (Raymond et al., 1986; St-Leger et al. 1986; Bidochka and Khachatourians, 1994; Clarkson and Charnley, 1996). The production of cuticle-degrading enzymes has been proposed as an important attribute determining the virulence of the entomopathogenic fungi toward their hosts (St-Leger et al., 1995; Pinto et al., 2002). For example, high level of proteases produced by B. bassiana has been shown to be directly related to early onset of mortality in the larvae of the wax moth, Galleria mellonella (Lep.: Pyralidae) (Gupta et al., 1994). The resemblance of genes encoding for degrading protease in B. bassiana and M. anisopliae (Joshi et al., 1995) suggests that similar proteases may be widespread among different entomopathogenic fungi. However, recent evidence indicates that different species and even isolates of the entomopathogenic fungi may exhibit some degree of variation in production of cuticle degrading proteases (Clarkson and Charnley, 1996; Pinto et al., 2002; Boldo et al., 2009; Dhar and Kaur, 2010; Revathi et al., 2011). These variations may reflect the differences observed in the virulence of different isolates and species such that, isolates with higher proteolytic activity are expected to represent higher virulence toward their host. In this study, we evaluated the virulence as well as the proteolytic activity of 17 native isolates of the entomopathogenic fungus B. bassiana sensu lato (Hypocreales: Cordycipitaceae) collected from different geographical regions in Iran.

Materials and Methods

Fungal isolate, culture conditions and purification
To obtain the fungal isolates needed for this study (Table 1), samplings were carried out from different sources including soil, infected individuals of the striped rice borer, Chilo suppressalis (Lep.: Crambidae), and the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) located at three Northern provinces of Iran (Mazandaran, Guilan, and Alborz). The samples containing fungus were placed in plastic bags and transferred to the Biological Control Laboratory, University of Tehran. To exclude any non-target organism, one g of each soil sample was mixed with 200 ml of sterile distilled water containing 0.02% (v/v) Tween 80. After shaking for approximately 30 min on a shaker at 150 rpm, 200 μl of each soil suspension was plated onto Petri dishes (9 cm in diameter) containing the D0C2 selective medium for B. bassiana (Shimazu and Sato, 1996). The Petri dishes were incubated in continuous dark condition at 25 °C for 14 days until the fungal colonies were formed. Colonies with fruiting structures were transferred to fresh SDAY (Sabouraud’s dextrose agar with yeast) culture medium.
(Merck, Germany). To isolate the fungi grown on insect body surface, the insects were superficially sterilized by 70% ethanol for one min and 5% sodium hypochlorite for 3 min and rinsed three times in sterile distilled water for one min. After secondary conidiogenesis of the fungus, they were transferred to SDAY medium, incubated in continuous dark condition at 25 °C for 14 days. Identification of fungal species (Humber, 2005) was performed by mounting the conidia and conidiophores produced on SDAY medium onto microscopic slides using the lacto-phenol cotton blue staining method. The fungi were single spored according to the method of Wang-Ching and Wen-Hsiung (1997).

Table 1 Native Beauveria bassiana isolates used in this study.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Accession No.</th>
<th>Source/Host¹</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAHI</td>
<td>EUT201</td>
<td>Soil</td>
<td>Lahijan</td>
</tr>
<tr>
<td>SHALI</td>
<td>EUT202</td>
<td>Soil</td>
<td>Amol/Rice Research Institute</td>
</tr>
<tr>
<td>MITE</td>
<td>EUT203</td>
<td>T. urticae</td>
<td>Karaj/College of Agriculture</td>
</tr>
<tr>
<td>JB1</td>
<td>EUT204</td>
<td>C. suppressalis</td>
<td>Babol/Rice field</td>
</tr>
<tr>
<td>JB2</td>
<td>EUT205</td>
<td>C. suppressalis</td>
<td>Babol/Rice field</td>
</tr>
<tr>
<td>JF1</td>
<td>EUT206</td>
<td>C. suppressalis</td>
<td>Fereydunkenar/Rice field</td>
</tr>
<tr>
<td>JF2</td>
<td>EUT207</td>
<td>C. suppressalis</td>
<td>Fereydunkenar/Rice field</td>
</tr>
<tr>
<td>JM1</td>
<td>EUT208</td>
<td>C. suppressalis</td>
<td>Mahmoudabad/Rice field</td>
</tr>
<tr>
<td>JM2</td>
<td>EUT209</td>
<td>C. suppressalis</td>
<td>Mahmoudabad/Rice field</td>
</tr>
<tr>
<td>RI1</td>
<td>EUT210</td>
<td>C. suppressalis</td>
<td>Amol/Rice Research Institute</td>
</tr>
<tr>
<td>RI2</td>
<td>EUT211</td>
<td>C. suppressalis</td>
<td>Amol/Rice Research Institute</td>
</tr>
<tr>
<td>DD</td>
<td>EUT212</td>
<td>C. suppressalis</td>
<td>Dabudasht/Rice field</td>
</tr>
<tr>
<td>BA</td>
<td>EUT213</td>
<td>C. suppressalis</td>
<td>Amol/Rice field</td>
</tr>
<tr>
<td>BB</td>
<td>EUT214</td>
<td>C. suppressalis</td>
<td>Amol/Rice field</td>
</tr>
<tr>
<td>BC</td>
<td>EUT215</td>
<td>C. suppressalis</td>
<td>Noshahr/Rice field</td>
</tr>
<tr>
<td>BD</td>
<td>EUT216</td>
<td>C. suppressalis</td>
<td>Babolsar/Rice field</td>
</tr>
<tr>
<td>BF</td>
<td>EUT217</td>
<td>C. suppressalis</td>
<td>Nour/Rice field</td>
</tr>
</tbody>
</table>

¹T: Tetranychus, C. Chilo.

Insect

The Khapra beetle, Trogoderma granarium (Col.: Dermestidae) was used as host for the entomopathogenic fungus. The larvae and adults of T. granarium were obtained from the laboratory of Insect Physiology and Toxicology at the University of Tehran, and a stock colony was established in ventilated jars (24 × 18 × 9 cm) at 33 ± 2 °C, 50% R. H. and continuous dark condition. Comminuted wheat grain was used as diet for the beetle. To avoid the over accumulation of excrements and larval exuviae, the growing media were refreshed three times weekly.

Virulence assays

A preliminary bioassay was performed to determine LC₅₀ for one of the fungal isolates (JB2, see Table 1) selected randomly. The conidia of this isolate, which developed on SDAY medium, were harvested directly from the 10 day-old fungal cultures by scraping the sporulated colony and suspending in 20 ml suspension solution containing 0.2% Tween 80 and 2 g glass beads. The concentration of conidia was estimated using an improved neubauer haemocytometer under a light microscope (Zeiss) at × 40 magnification. Eight serial concentrations of conidial suspension, including 10⁴-10⁸ conidia ml⁻¹, were used in the preliminary bioassay.

Ten ml of the prepared conidial suspensions were poured in Petri dishes (9 cm in diameter) and 15 T. granarium 2nd instar larvae were released in the Petri dishes where they were exposed to the conidial suspensions for 5 sec. The larvae were then wiped by a filter paper and transferred to new Petri dishes containing comminuted wheat grain where they were incubated for 8 days. The Petri dishes were checked daily for larval mortality and the dead larvae were removed from the Petri dishes. The control larvae were treated only with distilled water containing 0.02% Tween 80. This assay was carried out with three replicates. After determination of LC₅₀ for this isolate, the virulence of all isolates on T. granarium larvae
was evaluated only at this concentration. The dead larvae were sterilized superficially and incubated at 25 °C for verification of pathogen growth. Whole experiment was repeated twice and pooled data was used in statistical analysis.

Protease assay

To induce the production of proteases in the entomopathogenic isolates, a suspension of the conidia (10^7 conidia per ml) was prepared. One ml of the suspension was transferred to Petri dishes containing SDY liquid medium and the Petri dishes were incubated at 28 ± 1 °C, for 5 days. The mixture was then centrifuged at 4000 rpm for 5 min and the supernatant was collected as protease source. The protease assay was done according to the method described by Kunitz (1947). Casein substrate was prepared for enzyme assay by dissolving 2% casein (Sigma) in 0.01 M Tris HCl (pH 8.0) containing 10 mM CaCl2 (pH 8.0) and 50 ml distilled water. Four hundred µl of casein substrate was added to 200 µl of culture extract in 0.01 M Tris HCl pH 8, 10 mM CaCl2. The reaction mixture was incubated at 35 °C for 10 min and the reaction was terminated by adding 500 µl trichloroacetic acid (TCA). The reaction mixture was centrifuged at 8000 rpm for 5 min and the absorbance of the resultant supernatant was observed at 280 nm (Ultrospec II, LKB Biochrom, UK). Two controls were considered for this assay, one containing 600 µl of pure SDY medium and the other containing 600 µl buffer (0.01 M Tris HCl pH 8, 10 mM CaCl2) in 50 ml distilled water. Three replicates were considered for this experiment.

One unit of protease activity was defined as the amount of enzyme that produced 1 mM of Tyrosine per minute under the above conditions (St-Leger *et al.*, 1987; Gupta *et al.*, 1992; Revathi *et al.*, 2011). This was calculated using the Beer-Lambert law as follow:

\[A = \varepsilon \cdot b \cdot c \]

Where \(A \) is absorbance, \(\varepsilon \) is the molar absorptivity with units of L mol\(^{-1}\) cm\(^{-1}\) (Tyrosine = 1280), \(b \) is the path length of the sample (cuvette) and \(c \) is the concentration of the compound in solution (mol L\(^{-1}\)).

Statistical analysis

POLO-PLUS software was used for LC\(_{50}\) estimation of the fungal isolate JB2. Analysis of variance (ANOVA) was performed to compare the virulence and protease activity among different isolates of the fungus. The relationship between virulence and proteolytic activity in isolates was tested using Pearson correlation coefficient. Bonferroni test was applied to test this coefficient statistically. These analyses were done using computer software SYSTAT 12.

Results and Discussion

Our preliminary bioassay revealed that a concentration of 3.9 × 10^6 conidia per ml from the JB2 isolate of *B. bassiana* sensu lato caused an average mortality of 50% in larvae of *T. granarium*. Results of main bioassay showed that all isolates were pathogenic to *T. granarium* (Fig. 1) with isolate MITE of *B.* bassiana sensu lato causing the highest rate of larval mortality (59%). Isolate BA caused the lowest larval mortality (only 25%). The larval mortalities caused by the 17 isolates are shown in Fig. 1. Analysis of variance revealed that the 17 isolates significantly differed in their virulence against *T. granarium* (F\(_{16,40}\) = 2.72, \(P < 0.01 \)). The onset of larval mortality was recorded at 4th day after treatment, although it varied among different isolates.

We found a significant difference in proteolytic activity of the 17 different isolates of *B. bassiana* (F\(_{16,40}\) = 5213.47, \(P < 0.00001 \)) on Casein substrate. The highest proteolytic activity was detected in MITE isolate (1.028 U/ml), while the BB isolate showed the lowest enzyme activity (0.157 U/ml). The relationship between the virulence and proteolytic activity of the 17 isolates was evaluated using correlation analysis. A significant correlation was observed between virulence of isolates and their proteolytic activities (Bonferoni test: \(r = 0.84, P < 0.001 \)).
The entomopathogenic fungus *B. bassiana* is an important biological control agent on a very wide variety of arthropods, including some of economically important pests of agriculture, horticulture, and forestry. It has been estimated to naturally occur in more than 700 species of arthropods (Inglis *et al.*, 2001). In the current study, a total of 17 isolates belonging to *B. bassiana* were collected from three Northern provinces of Iran (Mazandaran, Guilan, and Alborz). The majority of these isolates were detected from infected larvae of the striped rice borer, *C. suppressalis* (Table 1), an important pest of rice in Northern Iran, indicating that *B. bassiana* is a common natural regulation agent of *C. suppressalis* in these regions.

All isolates obtained from soil, *C. suppressalis* (a moth), and *T. urticae* (a mite) showed significant virulence against Khapra beetle, *T. granarium*, implying that *B. bassiana* isolates are capable of invading a wide range of arthropods belonging to taxa with different evolutionary origins. The mortality of larvae initiated from the 4th day after treatment with the fungus. This delay is probably related to the time needed for adhesion, penetration, germination and growth of the fungus. Such effect of entomopathogenic fungi has been previously reported in different studies (Thomas *et al.*, 1997; Ekesi, 2001).

We found a wide variation in virulence of *B. bassiana sensu lato* isolates against *T. granarium* (Fig. 1). The larval mortality of *T. granarium* ranged from 25 to 59% as a result of treatment with isolates BA and MITE, respectively (Fig. 1). Such variations in virulence of different isolates of entomopathogenic fungi have been well documented in different species and seems to be caused by a number of factors such as insect host, host plant properties, host food, environmental conditions, etc. (Todorova *et al.*, 1994; Vandenberg *et al.*, 1998; Santiago-Alvarez *et al.*, 2006; Talai-Hassanloui *et al.*, 2006; Safavi *et al.*, 2007; Carneiro *et al.*, 2008; Ngumbi *et al.*, 2011; Sanchez-Pena *et al.*, 2011).

In encountering with insect cuticle, the entomopathogenic fungi produce a variety of degrading enzymes, including proteases, chitinases, and lipases, against the major components of the cuticle, i.e. proteins, chitin, and lipids, respectively (Raymond *et al.*, 1986). As proteins constitute the majority of insects' cuticle (about 70%) (Hepburn, 1985; Charnley, 2003), the degrading activities of proteases are expected to play much more important role in penetration of the entomopathogenic fungi through insect cuticle compared to enzymes which catalyze other components such as chitins and lipids. Therefore, the proteolytic activities are expected to reflect the virulence of the entomopathogenic fungi, a hypothesis that has been received great attention during the last decades (Paris and Segretain, 1978; Bidochka and Khachatourians, 1990; Charnley and St. Leger, 1991). We found significant differences in proteolytic activities of the 17 studied isolates of *B. bassiana* (Fig. 2). Such variations in proteolytic activity of different isolates of *Beauveria bassiana* and some other fungi have been demonstrated in previous studies and seem to be widespread among entomopathogenic fungi (Rosato *et al.*, 1981; Kaur and Padmaja, 2009; Dhar and Kaur, 2010). Strong evidences have uncovered the existence of a wide genetic variability in production of cuticle degrading enzymes in different isolates of entomopathogenic fungi (Braga *et al.*, 1994; Pinto *et al.*, 2002). Interestingly and as expected, the differences in proteolytic activities of our 17 studied isolates were in accordance with the changes in their virulence, such that the higher the proteolytic activity of a given isolate, the higher the virulence of that isolate. A relatively strong correlation was found between the virulence and proteolytic activity of the 17 isolates (r = 0.84).
Proteolytic activity and virulence of *B. bassiana* _______________________________________ J. Crop Prot.

Figure 1 Mean (± SE) percentage mortalities caused by different native *Beauveria bassiana* isolates on the Khapra beetle, *Trogoderma granarium* larvae at 3.9×10^6 conidia per ml, a LC$_{50}$ level of JB2, Means followed by the different letters are significantly different (F-LSD, $P < 0.05$).

Figure 2 Mean (± SE) proteolytic activity of different native *Beauveria bassiana* isolates on Casein substrate. Means followed by the different letters are significantly different (F-LSD, $P < 0.05$).

Altogether, our current study highlights that convergent variability exists in proteolytic activity and virulence among different isolates of *B. bassiana sensu lato*. Several authors have considered that protease activity can determine the virulence of entomopathogenic fungi to some degree, thus can be used as a virulence index (St-Leger *et al*., 1987; St-Leger *et al*., 1996; Feng, 1998; Gillespie *et al*., 1998; Castellanos-Moguel *et al*., 2008). However, there are other studies in which, no reliable relationship between the protease activity and virulence of studied entomopathogenic fungi has been established (Gillespie *et al*., 1998; Vargas *et al*., 2003; Dias *et al*., 2008).

It is proposed that virulent isolates of *B. bassiana sensu lato*, for using as effective biological control agents, could be screened and selected based on their degrading protease production pattern which is consistent with the findings of Rosato *et al.* (1981) and Castellanos-
Moguel et al. (2008). Additionally, recent advances in biotechnology provide new insights into the more efficient control of insect pests using entomopathogenic fungi. For example, overproduction of the endochitinase, Bbchit1, through cloning of Bbchit1 gene has been suggested to increase the virulence of B. bassiana against aphids (Fang et al., 2005). Continued studies in these areas will undoubtedly improve the potential of these biological control agents for use in insect population management.

Acknowledgements

The authors appreciate Mahmoud Fazeli-Dinan for his great help with this work. This study was financially supported by University of Tehran, Grant No. 73132800.6.15, which is appreciated.

References

ارتباط توانایی پروتئولیتیک و زهرآگیژی در جدایی‌های فارق بیمارگ حشرات

Beauveria bassiana

معصومه زارع، رضا طلاحی حسنیandi و خلیل برگ دفتری فتوحی‌فر

گروه گیاه‌پزشکی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

rtaleci@ut.ac.ir، PST الکترونیکی نویسنده مشتمل مکاتبه:

دریافت: 21 دی 1392، پذیرش: 13 اسفند 1392

چکیده: فارق‌های بیمارگ حشرات برای تسهیل ورود خود از میان موادهای گیاهی، هزاران‌ها را تولید می‌کند. جدایی‌های فارق‌های بیمارگ حشرات از نظر فعالیت پروتئولیتیک و زهرآگیژی، تفاوت قابل‌توجهی دارند. این که فعالیت پروتئولیتیک جدایی‌های مختلف می‌تواند نشان‌دهنده‌ای از زهرآگیژی آنها را می‌باشد، باعث بنی شیب پیش‌فرض ارائه شده است. در این مطالعه، زهرآگیژی و فعالیت پروتئولیتیک 17 جدایی از فارق جمع‌آوری شده از مناطق مختلفی متفاوت از ایران مورد ارزیابی قرار گرفته است. محیط کشت D0C2 برای جداسازی جدایی‌های از نمونه‌های خاک مورد استفاده قرار گرفته است. نتایج نشان داد که T. granarium با روش غوطه‌وری روى لازوهای MITE و BA متفاوت می‌باشد که T. granarium و MITE به جدایی‌های مورد مطالعه، هم در فعالیت پروتئولیتیک و هم در زهرآگیژی یا در کل جدایی‌های یا بین میزان مشاهده شد. این نتایج، غیرالگی و روند انتخاب جدایی‌های زهرآگیژی قارچ‌های بیمارگ حشرات، عوامل اصلی برای استفاده در برنامه‌های کنترل بیولوژیکی آفات را تسهیل می‌نماید.

واژگان کلیدی: فارق بیمارگ حشرات، فعالیت پروتئازی، حشره

Beauveria Trogoderma granarium bassiana